Governments and businesses are investing heavily in carbon capture and storage (CCS) to meet climate goals and decarbonize heavy industries. With nearly $80 billion in investment expected to flow into the sector in the coming years, carbon capture is becoming a central part of global climate strategies. Reports say global CCS capacity might grow four times by 2030. This shows big advances in technology, funding, and teamwork across countries.
Why Is CCS Gaining So Much Attention?
Carbon capture and storage is a process that captures carbon dioxide (CO₂) from industrial and energy-related sources before it reaches the atmosphere. It then stores the carbon underground in geological formations.
CCS works well in sectors like cement, steel, and fossil fuel plants. These areas are tough to decarbonize with just renewable energy.



A notable example is a $500 million agreement between Occidental Petroleum and the Abu Dhabi National Oil Company (ADNOC). They will build a big direct air capture (DAC) facility in Texas.
The deal shows the growing global interest in CCS. It’s not just about cutting emissions; it’s also about creating carbon removal solutions that support other climate efforts.
Experts agree that CCS isn’t a complete solution. However, it plays a key role by tackling emissions that other technologies can’t remove. It is also one of the few methods available today for carbon dioxide removal, a crucial component for meeting long-term climate targets.
How Fast Is CCS Capacity Growing?
The global CCS capacity is expected to grow fourfold by 2030, according to the DNV report. From around 50 million tonnes of CO₂ captured annually today, capacity could rise to more than 550 million tonnes per year by the end of the decade. This would represent around 6% of today’s energy-related global emissions.



This growth requires major investment in infrastructure, including new carbon pipelines, storage hubs, and large-scale capture facilities. North America and Europe are expected to lead the expansion. They could make up more than 80% of the expected CCS capacity by 2030. This is due to helpful climate policies, funding incentives, and established infrastructure.



In the U.S., the Inflation Reduction Act drives CCS growth. It offers tax credits up to $85 for each metric ton of CO₂ captured and stored permanently. Similarly, the European Union supports CCS through its Innovation Fund, with countries like Norway and the Netherlands building cross-border carbon storage networks in the North Sea.
Emerging markets are also entering the CCS space. In Asia, Japan and South Korea have begun planning domestic CCS facilities and exploring regional carbon storage partnerships.
Smart Tech, Lower Costs: CCS Innovation Takes Off
Technology is central to making CCS more effective and affordable. Current advancements include improved solvents for carbon capture, modular DAC units, and more efficient CO₂ transport and storage systems. These innovations help lower energy use and cut costs.
A 2023 report from the Energy Futures Initiative (EFI) says CCS costs might drop by 40% by 2050. This could happen because of better technology and larger production. New digital tools, like AI monitoring systems, are being tested. They track carbon storage performance in real time and help ensure long-term safety.
Data centers in the U.S. are beginning to integrate CCS into their sustainability efforts. For example, Microsoft is partnering with firms like Heirloom and CarbonCapture to buy permanent carbon removal credits backed by CCS. These partnerships show how CCS is moving beyond industrial use and into corporate sustainability strategies.
Hybrid projects, combining renewable energy with CCS, are also on the rise. These include bioenergy with carbon capture and storage (BECCS), where biomass is used for power generation and the CO₂ is captured. This type of system can result in net-negative emissions—removing more carbon from the atmosphere than it emits.



How Do Policy and Carbon Markets Influence CCS Growth?
Strong policy support is driving CCS development. In the U.S., the Section 45Q tax credit offers financial incentives for both point-source carbon capture and DAC projects. The Department of Energy also provides funding for demonstration and early-stage CCS projects.
Globally, carbon markets are beginning to recognize the role of CCS. The voluntary carbon market (VCM) and compliance markets in California and the EU Emissions Trading System are considering or already using CCS-based credits.
In 2024, the global carbon market was valued at around $1.4 billion according to MSCI, with voluntary carbon credit transaction volumes declining but demand remaining steady. Projections suggest it could grow significantly, reaching between $7 billion and $35 billion by 2030.
Longer-term forecasts estimate the market could expand to as much as $250 billion by 2050. This is driven by increasing corporate climate commitments and demand for high-quality carbon removal credits.
High-quality carbon credits from CCS projects could play a major role in this growth. Projects that use strict measurement, reporting, and verification (MRV) protocols can attract higher prices. This applies in both voluntary and regulatory markets.
Wood Mackenzie estimates the U.S. CCUS (carbon capture, utilization, and storage) sector could offer a $196 billion investment opportunity over the next 10 years. This is especially true for the oil, gas, chemical, and power industries.



Meanwhile, countries like Canada, Australia, and the UK are developing shared CCS “hub” models—regional centers that link multiple emission sources to centralized storage facilities. These hubs lower costs and speed up development by pooling resources and infrastructure.
A Critical Piece of the Climate Puzzle
By 2030, global CCS projects could capture between 430 and 550 million tonnes of CO₂ each year. This is a big step forward, but it’s not enough. Experts say we need 1.3 billion tonnes per year by mid-century to meet the Paris Agreement goals.
Still, CCS plays a unique and necessary role in cutting emissions where alternatives are limited. The technology’s capture capacity will grow to 1,300 MtCO2/yr. It also supports the production of low-carbon hydrogen, decarbonized fuels, and sustainable building materials.



However, some environmental groups caution that CCS must be applied carefully. Using captured carbon for enhanced oil recovery (EOR) can hurt climate efforts. This happens if it isn’t combined with limits on fossil fuel use.
Clear governance, independent checks, and science-based standards are key to making sure CCS projects truly help climate goals. While it is not a silver bullet, CCS can buy time and cut emissions in sectors that are difficult to decarbonize with renewables alone.
As global capacity grows and costs drop, CCS will likely be key to climate strategies. This includes energy efficiency, clean fuels, and electrification. Continued collaboration among stakeholders, significant investment, and communities’ support will be key to making carbon capture and storage both scalable and sustainable.